Focal-adhesion targeting links caveolin-1 to a Rac1-degradation pathway.

نویسندگان

  • Micha Nethe
  • Eloise C Anthony
  • Mar Fernandez-Borja
  • Rob Dee
  • Dirk Geerts
  • Paul J Hensbergen
  • André M Deelder
  • Gudula Schmidt
  • Peter L Hordijk
چکیده

Directional cell migration is crucially dependent on the spatiotemporal control of intracellular signalling events. These events regulate polarized actin dynamics, resulting in protrusion at the front of the cell and contraction at the rear. The actin cytoskeleton is regulated through signalling by Rho-like GTPases, such as RhoA, which stimulates myosin-based contractility, and CDC42 and Rac1, which promote actin polymerization and protrusion. Here, we show that Rac1 binds the adapter protein caveolin-1 (Cav1) and that Rac1 activity promotes Cav1 accumulation at Rac1-positive peripheral adhesions. Using Cav1-deficient mouse fibroblasts and depletion of Cav1 expression in human epithelial and endothelial cells mediated by small interfering RNA and short hairpin RNA, we show that loss of Cav1 induces an increase in Rac1 protein and its activated, GTP-bound form. Cav1 controls Rac1 protein levels by regulating ubiquitylation and degradation of activated Rac1 in an adhesion-dependent fashion. Finally, we show that Rac1 ubiquitylation is not required for effector binding, but regulates the dynamics of Rac1 at the periphery of the cell. These data extend the canonical model of Rac1 inactivation and uncover Cav1-regulated polyubiquitylation as an additional mechanism to control Rac1 signalling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphological adjustment of senescent cells by modulating caveolin-1 status.

Morphological change is one of the cardinal features of the senescent phenotype; for example, senescent human diploid cells have a flat large shape. However, the mechanisms underlying such senescence-related morphological alterations have not been well studied. To investigate this situation, we characterized the senescence-dependent changes of cellular structural determinants in terms of their ...

متن کامل

A novel caveolin-1/p85α/Rab5/Tiam1/Rac1 signaling axis in tumor cell migration and invasion

The small GTPase Rab5 has been frequently studied in the context of intracellular trafficking, but evidence obtained more recently has implicated Rab5 as a critical regulator of cell adhesion, migration and invasion in both normal and tumor cells. These recent findings showing that Rab5 promotes Rac1 activation and focal adhesion dynamics have highlighted the question as to what the upstream re...

متن کامل

Caveolin-1-Enhanced Motility and Focal Adhesion Turnover Require Tyrosine-14 but Not Accumulation to the Rear in Metastatic Cancer Cells

Caveolin-1 is known to promote cell migration, and increased caveolin-1 expression is associated with tumor progression and metastasis. In fibroblasts, caveolin-1 polarization and phosphorylation of tyrosine-14 are essential to promote migration. However, the role of caveolin-1 in migration of metastatic cells remains poorly defined. Here, caveolin-1 participation in metastatic cell migration w...

متن کامل

Type I PIPK-α regulates directed cell migration by modulating Rac1 plasma membrane targeting and activation

Phosphatidylinositol-4,5-bisphosphate (PI4,5P(2)) is a critical regulator of cell migration, but the roles of the type I phosphatidylinositol-4-phosphate 5-kinases (PIPKIs), which synthesize PI4,5P(2), have yet to be fully defined in this process. In this study, we report that one kinase, PIPKI-alpha, is a novel upstream regulator of Rac1 that links activated integrins to the regulation of cell...

متن کامل

TSC2 modulates actin cytoskeleton and focal adhesion through TSC1-binding domain and the Rac1 GTPase

Tuberous sclerosis complex (TSC) 1 and TSC2 are thought to be involved in protein translational regulation and cell growth, and loss of their function is a cause of TSC and lymphangioleiomyomatosis (LAM). However, TSC1 also activates Rho and regulates cell adhesion. We found that TSC2 modulates actin dynamics and cell adhesion and the TSC1-binding domain (TSC2-HBD) is essential for this functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 123 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2010